Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate

نویسندگان

  • Michael F. A. Bradfield
  • Ali Mohagheghi
  • Davinia Salvachúa
  • Holly Smith
  • Brenna A. Black
  • Nancy Dowe
  • Gregg T. Beckham
  • Willie Nicol
چکیده

BACKGROUND Bio-manufacturing of high-value chemicals in parallel to renewable biofuels has the potential to dramatically improve the overall economic landscape of integrated lignocellulosic biorefineries. However, this will require the generation of carbohydrate streams from lignocellulose in a form suitable for efficient microbial conversion and downstream processing appropriate to the desired end use, making overall process development, along with selection of appropriate target molecules, crucial to the integrated biorefinery. Succinic acid (SA), a high-value target molecule, can be biologically produced from sugars and has the potential to serve as a platform chemical for various chemical and polymer applications. However, the feasibility of microbial SA production at industrially relevant productivities and yields from lignocellulosic biorefinery streams has not yet been reported. RESULTS Actinobacillus succinogenes 130Z was immobilised in a custom continuous fermentation setup to produce SA on the xylose-enriched fraction of a non-detoxified, xylose-rich corn stover hydrolysate stream produced from deacetylation and dilute acid pretreatment. Effective biofilm attachment, which serves as a natural cell retention strategy to increase cell densities, productivities and resistance to toxicity, was accomplished by means of a novel agitator fitting. A maximum SA titre, yield and productivity of 39.6 g L(-1), 0.78 g g(-1) and 1.77 g L(-1) h(-1) were achieved, respectively. Steady states were obtained at dilution rates of 0.02, 0.03, 0.04, and 0.05 h(-1) and the stirred biofilm reactor was stable over prolonged periods of operation with a combined fermentation time of 1550 h. Furthermore, it was found that a gradual increase in the dilution rate was required to facilitate adaptation of the culture to the hydrolysate, suggesting a strong evolutionary response to the toxic compounds in the hydrolysate. Moreover, the two primary suspected fermentation inhibitors, furfural and HMF, were metabolised during fermentation with the concentration of each remaining at zero across all steady states. CONCLUSIONS The results demonstrate that immobilised A. succinogenes has the potential for effective conversion of an industrially relevant, biomass-derived feed stream to succinic acid. Furthermore, due to the attractive yields, productivities and titres achieved in this study, the process has the potential to serve as a means for value-added chemical manufacturing in the integrated biorefinery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation

BACKGROUND Co-production of chemicals from lignocellulosic biomass alongside fuels holds promise for improving the economic outlook of integrated biorefineries. In current biochemical conversion processes that use thermochemical pretreatment and enzymatic hydrolysis, fractionation of hemicellulose-derived and cellulose-derived sugar streams is possible using hydrothermal or dilute acid pretreat...

متن کامل

Enhanced Succinic Acid Production from Sake Lees Hydrolysate by Dilute Sulfuric Acid Pretreatment and Biotin Supplementation

Succinic acid is valued as a potential starting point for the production of chemicals of the C4 family or in the preparation of biodegradable polymers. For sustainable development in this era of petroleum shortage, production of succinic acid by microbial fermentation of renewable feedstock has attracted great interest. In this study, pretreatment with sulfuric acid and biotin supplementation w...

متن کامل

METABOLIC CAPABILITIES OF Actinobacillus succinogenes FOR SUCCINIC ACID PRODUCTION

Attention has been focused on microbial succinic acid production as an alternative for conventional chemical synthesis that is associated with environmental pollution. A metabolic model for Actinobacillus succinogenes 130Z was developed with a mixture of glucose and xylose as substrate. The metabolic fluxes during succinicate production were determined using flux balance analysis by linear prog...

متن کامل

Isolation of NH₄+-tolerant mutants of Actinobacillus succinogenes for succinic acid production by continuous selection.

Actinobacillus succinogenes, a typical succinic acid producing microorganism, was inhibited seriously by ammonium ion, which hampered industrialization of A. succinogenes with ammonium ion based material as the pH controller. In this study, we have isolated an ammonium ion-tolerant mutant of A. succinogenes by continuous-culture technique in which all environmental factors beside the stress (am...

متن کامل

Succinic acid production with Actinobacillus succinogenes: rate and yield analysis of chemostat and biofilm cultures

BACKGROUND Succinic acid is well established as bio-based platform chemical with production quantities expecting to increase exponentially within the next decade. Actinobacillus succinogenes is by far the most studied wild organism for producing succinic acid and is known for high yield and titre during production on various sugars in batch culture. At low shear conditions continuous fermentati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015